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Design of Asymmetrical RF and Microwave Bandpass
Filters by Computer Optimization

Djuradj Budimir, Senior Member, IEEE, and George Goussetis, Student Member, IEEE

Abstract—This paper presents an optimization-based approach
to the design of asymmetrical filter structures having the max-
imum number of return- or insertion-loss ripples in the passband
such as those based upon Chebyshev function prototypes. The
proposed approach has the following advantages over the general
purpose optimization techniques adopted previously such as: less
frequency sampling is required, optimization is carried out with
respect to the Chebyshev (or minimax) criterion, the problem of
local minima does not arise, and optimization is usually only re-
quired for the passband. When implemented around an accurate
circuit simulation, the method can be used to include all the effects
of discontinuities, junctions, fringing, etc. to reduce the amount
of tuning required in the final filter. The design of asymmetrical
ridged-waveguide bandpass filters is considered as an example.
Measurements on a fabricated filter confirm the accuracy of the
design procedure.

Index Terms—Bandpass filters, computer optimization, rectan-
gular waveguide, ridged waveguide, waveguide filters.

I. INTRODUCTION

ALL-METAL inserts placed in the -plane of a rectangular
waveguide along the waveguide axis offer the potential

of realizing low-cost, mass-producible, and low dissipation-loss
millimeter-wave filters [1]. For the advanced design of such fil-
ters, accurate design methods are desirable. General-purpose
optimization techniques based on least th objective functions
use general forms of error minimization algorithms [2]. Usu-
ally the response of an optimizable filter is sampled at a number
of equally spaced frequencies and the error between this sam-
pled response and the desired response is computed at each fre-
quency. The optimization program, through an iterative process,
reduces this error to a minimum, arriving at a final filter design
in terms of the optimized filter parameters. These optimization
techniques cannot be guaranteed to satisfy filter specifications
and may even converge to a local minimum. This paper attempts
to show how problems within the scope of asymmetrical mi-
crowave filter design may be formulated effectively as optimiza-
tion problems, to explain the differences between these formu-
lations, and to indicate an appropriate optimization method that
can be implemented in situations when the classical synthesis
approach is inappropriate. When a common approach to the de-
sign of microwave filters results in a design passband, which
differs considerably from that which is specified, optimization
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is required to tune the filter dimensions to achieve a design that
meets certain requirements.

An optimization procedure to optimize symmetrical band-
pass filters [3] has already proven its suitability. The procedure
is extended (modified) here to optimize asymmetrical RF and
microwave bandpass filters. This method searches for tuning
points in the filter transfer function and forces the minimums,
as well as the maximums (peaks), of the ripple levels at these
points to have specified values. If an th-degree filter is present,
there are maximums, minimums, and two band edges
making optimization parameters. The method requires
knowledge of the filter insertion or return loss at these points.
The method will generate a set of equations that are solved to
give a new set of parameter values. The cycle is then repeated
until the filter characteristic is within an arbitrarily close value to
the desired specification. This technique optimizes the passband
of a filter with respect to the Chebyshev (or minimax) criterion
[5].

Formulation of the equal-ripple optimization in the context
of the design of asymmetrical microwave bandpass filters, in
terms of insertion loss is given in Section II. The numerical im-
plementation of equal-ripple optimization, in the context of the
design of an asymmetrical ridged waveguide bandpass filter, is
presented in Section III. The design example is presented in Sec-
tion IV. Measurements on a fabricated filter confirm the accu-
racy of the design procedure.

II. DESCRIPTION OF THE ALGORITHM

Assume that an th-degree asymmetrical ridged-waveguide
bandpass filter (Fig. 1) has an insertion-loss response of the
form shown in Fig. 2. It exhibits
nonzero minima, the minima of which occur at the frequencies

. There are ripples, the maxima of
which occur at the frequencies . All of these

frequencies lie within the specified passband .
The deviation of a ripple maximum from the maximum al-

lowed insertion loss in the passband is a function of the
values required to specify the bandpass filter. There

are such functions

(1)

which have to be zero in order to satisfy the filter specification.
and are defined by

(2)

(3)
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Fig. 1. Configuration of the ridged-waveguide filter structure.

Fig. 2. Scheme for the numerical optimization of an asymmetrical filter.

and are also functions of the parameter
values of the asymmetrical filter.

The specification

(4)

(5)

is satisfied when

(6)

This is a system of nonlinear equations in
variables, which, in practice, needs to be solved

iteratively. The parameter values of a filter satisfying (4) and (5)
can be obtained by solving (6). The can be re-
garded as the components of an dimensional error vector. By
equating each of these components to zero (a vector process)
rather than minimizing the magnitude of the vector (a scalar
process), optimization is carried out. To apply an iterative non-
linear equation solver, it is necessary for a given set of filter pa-
rameter values to know the insertion loss only at the band-edge
frequencies and at the ripple maxima and minima. However, the
frequencies at which the ripple maxima and minima occur are
unknown and are functions of the filter parameter values. For a

(a)

(b)

Fig. 3. (a) f on maximum and (b) off maximum.

given set of filter parameter values, these frequencies can be ap-
proximately located by calculating the insertion loss on a coarse
sample of frequency points in the passband. The ripple maxima
and minima are shown in Figs. 3 and 4, respectively.

Figs. 3(a) and 4(a) show correctly centred at the maximum
and minimum. In Figs. 3(b) and 4(b), the sample frequency
is a little off so the function is sampled at frequencies slightly
higher and lower. By finding an equivalent parabola

(7)

passing through the three points at and , a
correction is derived, which can be applied to the frequency
to bring it closer to the extreme (minima or maxima). By using
quadratic interpolation [2] in the last few iterations, the correct
location and amplitude of the ripple maxima and minima can be
found.

The necessary condition for the maximum of is that

(8)

i.e.,

(9)
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(a)

(b)

Fig. 4. (a) f on minimum and (b) off minimum.

where locates the maximum of . The sufficiency condi-
tion for the maximum of is that

(10)

The correct location and amplitude of the ripple maxima can
be found by using the above procedure (quadratic interpolation)
in the last few iterations.

III. ALGORITHM FOR SOLVING THE SYSTEM OF

NONLINEAR EQUATIONS

The Newton–Raphson method [3] is a rapidly convergent
technique for the solution of a system of nonlinear equations
if a good initial approximation is available. The number
of times the function is evaluated in the process of finding
its root is the usual measure of computational effort. This
includes function evaluations required to calculate derivatives
numerically. By using finite difference, the Jacobian matrix
of the nonlinear functions defined by (1)–(6) can be
calculated numerically. For a given set of filter parameters, the

finite-difference calculation of the Jacobian matrix requires the
evaluation of

(11)

where denote the dimensions required
to specify a asymmetrical ridged waveguide filter (see Fig. 1).

For odd

(12)

For even

(13)

Denoting by and the dimensional vectors with
components and ,
the Newton–Raphson method has the general form [6]

(14)

where is the iteration number and is the
inverse of the Jacobian matrix evaluated at . The
response and errors after each iteration are computed again with
the new corrected parameters until the errors are judged to be
sufficiently small.

The Jacobian matrix of the nonlinear functions
is defined by

(15)

All blocks defined by (15) can be calculated numerically
using finite difference for a given set of filter parameter values
as

(16)

The choice of was arbitrary and was taken to be roughly
a one-thousandth part of .

IV. NUMERICAL IMPLEMENTATION OF

EQUAL-RIPPLE OPTIMIZATION

To apply the equal-ripple optimization technique described
in Section II to the design of asymmetrical bandpass filters, it is
necessary, for a given set of insert dimensions, to be able to cal-
culate the insertion loss on a sample of frequency points within
the specified passband. For an asymmetrical ridged-waveguide
bandpass filter, the insertion loss can be expressed in terms of
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an matrix [4]. The matrix representation of the whole
filter is

(17)

where

(18)

with

(19)

in which is the ridged-waveguide resonator length, is
the wavelength in the ridged-waveguide resonator for each fre-
quency, and is the cutoff frequency in the ridged-waveguide
resonator. The overall filter response [insertion loss ] can
be expressed in terms of elements of the total matrix of
the filter at each frequency (by directly combining the
matrices of the individual filter sections) as

(20)

The elements of the matrices of the individual
filter sections are calculated using the mode-matching method
[8]–[11]. The propagation constants of the eigenmodes in
ridged waveguides are related to the cutoff frequencies. The
transcendental equation of the eigenvalue of the th mode in
the ridged waveguide was solved numerically. However, due to
the singular behavior of the magnetic field at the edges of the
septa, a large number of modes need to be included in the field
expansions to ensure good convergence. This is similar to the
situation for the septum in the rectangular waveguide, and is
due to the singular behavior of the magnetic field at the edges
of the septum.

Neither accurate numerically fitted closed-form expressions,
nor accurate design tables for the electrical parameters of the

-plane septa in terms of septum dimensions (length and thick-
ness) and frequency are yet available. Thus, the accurate design
of ridged-waveguide filters requires the direct calculation of the
electrical parameters of the -plane septa. This highlights the
need in the optimized design of these filters for optimization
techniques, which minimize the number of calculations of the
electrical parameters of the -plane septa. A good approximate
design of ridged-waveguide filters can be obtained by the
procedure described in [4]. This procedure tries to implicitly
include the actual frequency dependence of the -plane septa
and results in passbands that nearly meet design specifications
such as the two passband edge frequencies yielding and

, passband return loss , stopband attenuation ,

Fig. 5. Calculated insertion loss before optimization.

Fig. 6. Calculated insertion loss after optimization.

the waveguide housing dimensions , the metal septum
thickness , and the ridged-waveguide gap . It is, therefore,
adopted in this paper as a means of generating a starting point
for optimization.

V. NUMERICAL AND EXPERIMENTAL RESULTS

In order to illustrate the new approach, a five-resonator
-band ridged-waveguide bandpass filter in WG-16, in which

the widths of the ridges are arbitrarily chosen (see Fig. 1),
with passband specification dB, 9.30 GHz

GHz has been designed. Fig. 5 shows the cal-
culated passband insertion loss of the ridged-waveguide filter
(ridged-waveguide gap mm, ridged-waveguide
gap mm, ridged-waveguide gap mm,
ridged-waveguide gap mm and ridged-waveguide
gap mm, respectively) using the approximate
method described in [8].

This approximate design was used as a starting point for
equal-ripple optimization. The passband insertion loss cal-
culated using the insert dimensions obtained on convergence
is shown in Fig. 6. The insert dimensions are shown in this
figure. The mode-matching method with 35 TE and 20 TM
modes is used throughout the optimization. The photograph of
a five-resonator asymmetrical ridged-waveguide bandpass filter
with the corresponding waveguide housing is shown in Fig. 7.
The calculated insertion loss and return loss of the final design
are shown in Fig. 8. The measured insertion loss and return
loss of the fabricated design are also included in this figure.
The filter was fabricated using a copper metal insert, which
was realized using a drill plotter (LPKF Protomat 60). The
measured insertion loss in the passband was less than 0.50 dB.
The simulated and experimental responses are in very good
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Fig. 7. Photograph of fabricated prototype.

Fig. 8. Theoretical and experimental results of fabricated prototype
(dimensions as in Fig. 6).

agreement. Any disagreement between theory and experiment
are due to the limited tolerances of the fabrication method.

VI. CONCLUSIONS

An optimization-based procedure for the accurate design of
asymmetrical RF and microwave filters has been presented. This
is a simple, fast, and reliable optimization method for the final
optimization of asymmetrical RF and microwave filter struc-
tures having the maximum number of return- or insertion-loss
ripples in the passband such as those based upon Chebyshev
function prototypes. Given an accurate simulation of the struc-
ture, the method will handle bandpass, low-pass, and high-pass
types, and will allow the return- or insertion-loss characteristic
to be nonequiripple. Its validity has been demonstrated for the
case of a nonuniform waveguide -plane filter. The developed
method has also predicted the stopband performance and has
provided a guiding tool for the design of filters with strict stop-
band specifications. The electromagnetic analysis of the discon-
tinuities in ridged-waveguide filters has been performed using
a mode-matching method. Experimental evidence demonstrates
the validity of the design procedure.
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